283 research outputs found

    Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding

    Full text link
    Purpose: Asymmetric gradient waveforms are attractive for diffusion encoding due to their superior efficiency, however, the asymmetry may cause a residual gradient moment at the end of the encoding. Depending on the experiment setup, this residual moment may cause significant signal bias and image artifacts. The purpose of this study was to develop an asymmetric gradient waveform design for tensor-valued diffusion encoding that is not affected by concomitant gradient. Methods: The Maxwell index was proposed as a scalar invariant that captures the effect of concomitant gradients and was constrained in the numerical optimization to 100 (mT/m)2^2ms to yield Maxwell-compensated waveforms. The efficacy of this design was tested in an oil phantom, and in a healthy human brain. For reference, waveforms from literature were included in the analysis. Simulations were performed to investigate if the design was valid for a wide range of experiments and if it could predict the signal bias. Results: Maxwell-compensated waveforms showed no signal bias in oil or in the brain. By contrast, several waveforms from literature showed gross signal bias. In the brain, the bias was large enough to markedly affect both signal and parameter maps, and the bias could be accurately predicted by theory. Conclusion: Constraining the Maxwell index in the optimization of asymmetric gradient waveforms yields efficient tensor-valued encoding with concomitant gradients that have a negligible effect on the signal. This waveform design is especially relevant in combination with strong gradients, long encoding times, thick slices, simultaneous multi-slice acquisition and large/oblique FOVs

    Gradient waveform design for tensor-valued encoding in diffusion MRI

    Full text link
    Diffusion encoding along multiple spatial directions per signal acquisition can be described in terms of a b-tensor. The benefit of tensor-valued diffusion encoding is that it unlocks the "shape of the b-tensor" as a new encoding dimension. By modulating the b-tensor shape, we can control the sensitivity to microscopic diffusion anisotropy which can be used as a contrast mechanism; a feature that is inaccessible by conventional diffusion encoding. Since imaging methods based on tensor-valued diffusion encoding are finding an increasing number of applications we are prompted to highlight the challenge of designing the optimal gradient waveforms for any given application. In this review, we first establish the basic design objectives in creating field gradient waveforms for tensor-valued diffusion MRI. We also survey additional design considerations related to limitations imposed by hardware and physiology, potential confounding effects that cannot be captured by the b-tensor, and artifacts related to the diffusion encoding waveform. Throughout, we discuss the expected compromises and tradeoffs with an aim to establish a more complete understanding of gradient waveform design and its impact on accurate measurements and interpretations of data.Comment: Invited review, submitted in May 2020 to the Journal of Neuroscience Methods. 46 pages, 9 figures, 35 equation

    Orientationally-averaged diffusion-attenuated magnetic resonance signal for locally-anisotropic diffusion

    Full text link
    Diffusion-attenuated MR signal for heterogeneous media has been represented as a sum of signals from anisotropic Gaussian sub-domains. Any effect of macroscopic (global or ensemble) anisotropy in the signal can be removed by averaging the signal values obtained by differently oriented experimental schemes. The resulting average signal is identical to what one would get if the micro-domains are isotropically (e.g., randomly) distributed, which is the case for "powdered" specimens. We provide exact expressions for the orientationally-averaged signal obtained via general gradient waveforms when the microdomains are characterized by a general diffusion tensor possibly featuring three distinct eigenvalues. Our results are expected to be useful in not only multidimensional diffusion MR but also solid-state NMR spectroscopy due to the mathematical similarities in the two fields.Comment: 13 pages (manuscript) + 12 pages (supplementary material), 4 figure

    Whole brain resting state functional connectivity abnormalities in schizophrenia

    Get PDF
    Background Schizophrenia has been associated with disturbances in brain connectivity; however the exact nature of these disturbances is not fully understood. Measuring temporal correlations between the functional MRI time courses of spatially disparate brain regions obtained during rest has recently emerged as a popular paradigm for estimating brain connectivity. Previous resting state studies in schizophrenia explored connections related to particular clinical or cognitive symptoms (connectivity within a-priori selected networks), or connections restricted to functional networks obtained from resting state analysis. Relatively little has been done to understand global brain connectivity in schizophrenia. Methods Eighteen patients with chronic schizophrenia and 18 healthy volunteers underwent a resting state fMRI scan on a 3 T magnet. Whole brain temporal correlations have been estimated using resting-state fMRI data and free surfer cortical parcellations. A multivariate classification method was then used to indentify brain connections that distinguish schizophrenia patients from healthy controls. Results The classification procedure achieved a prediction accuracy of 75% in differentiating between groups on the basis of their functional connectivity. Relative to controls, schizophrenia patients exhibited co-existing patterns of increased connectivity between parietal and frontal regions, and decreased connectivity between parietal and temporal regions, and between the temporal cortices bilaterally. The decreased parieto-temporal connectivity was associated with the severity of patients' positive symptoms, while increased fronto-parietal connectivity was associated with patients' negative and general symptoms. Discussion Our analysis revealed two co-existing patterns of functional connectivity abnormalities in schizophrenia, each related to different clinical profiles. Such results provide further evidence that abnormalities in brain connectivity, characteristic of schizophrenia, are directly related to the clinical features of the disorder.National Alliance for Medical Image Computing (U.S.) (Grant U54 EB005149)National Institutes of Health (U.S.) (R01 M074794)Medical Research Council of Australia (Overseas-Based Biomedical Traning Fellowship 520627

    Co-dimension 2 Geodesic Active Contours for MRA Segmentation

    Get PDF
    Automatic and semi-automatic magnetic resonance angiography (MRA)s segmentation techniques can potentially save radiologists larges amounts of time required for manual segmentation and cans facilitate further data analysis. The proposed MRAs segmentation method uses a mathematical modeling technique whichs is well-suited to the complicated curve-like structure of bloods vessels. We define the segmentation task as ans energy minimization over all 3D curves and use a level set methods to search for a solution. Ours approach is an extension of previous level set segmentations techniques to higher co-dimension
    • …
    corecore